Cawan Suci Crypto AI: Eksplorasi Terdepan Pelatihan Desentralisasi
Dalam seluruh rantai nilai AI, pelatihan model adalah tahap yang paling banyak mengkonsumsi sumber daya dan memiliki ambang teknis tertinggi, yang secara langsung menentukan batas kemampuan model dan efektivitas aplikasi praktis. Berbeda dengan pemanggilan ringan pada tahap inferensi, proses pelatihan memerlukan investasi daya komputasi besar secara terus-menerus, proses pengolahan data yang kompleks, dan dukungan algoritma optimasi yang intensif, merupakan "industri berat" yang sesungguhnya dalam pembangunan sistem AI. Dari perspektif paradigma arsitektur, metode pelatihan dapat dibagi menjadi empat kategori: pelatihan terpusat, pelatihan terdistribusi, pembelajaran federasi, dan pelatihan yang terdesentralisasi yang menjadi fokus bahasan ini.
Pelatihan terpusat adalah cara tradisional yang paling umum, dilakukan oleh satu lembaga di dalam cluster berkinerja tinggi lokal untuk menyelesaikan seluruh proses pelatihan, dari perangkat keras, perangkat lunak dasar, sistem penjadwalan cluster, hingga semua komponen kerangka pelatihan dikoordinasikan oleh sistem kontrol yang seragam. Arsitektur kolaborasi mendalam ini memungkinkan berbagi memori, sinkronisasi gradien, dan konten.