12 月 ETH 价格预测 · 发帖挑战 📈
12 月降息预期升温,ETH 热点回暖,借此窗口期发起行情预测互动!
欢迎 Gate 社区用户 —— 判趋势 · 猜行情 · 赢奖励 💰
奖励 🎁:预测命中的用户中抽取 5 位,每位 10 USDT
时间 📅:预测截止 12 月 11 日 12:00(UTC+8)
参与方式 ✍️:
在 Gate 广场发布 ETH 行情预测帖,写明价格区间(如 $3,200–$3,400,区间需<$200),并添加话题 #ETH12月行情预测
发帖示例 👇
示例①:
#ETH12月行情预测
预测区间:$3,150-$3,250
行情偏震荡上行,若降息如期落地 + ETF 情绪配合,冲击前高可期 🚀
示例②:
#ETH12月行情预测
预测区间:$3,300-$3,480
资金回流 + L2 降费利好中期趋势,向上试探 $3,400 的概率更高 📊
评选规则 📍
以 12 月 11 日 12:00(UTC+8)ETH 实时价格为参考
价格落入预测区间 → 视为命中
若命中人数>5 → 从命中者中随机抽取 5 位 🏆
罗马 + OML
ROMA和OML是@SentientAGI最先进的技术,使Sentient Chat能够达到——甚至超越——像ChatGPT这样的封闭企业AI的水平。
如何?
要理解这一点,我们需要看看开源人工智能的主要问题,以及ROMA和OML是如何解决这些问题的。
问题
众所周知,开源人工智能面临着诸如货币化、模型盗窃、盗版使用以及低效率/功能等重大挑战(1模型 = 1 功能)。
解决方案
各种专业代理、模型、数据集和工具连接到GRID生态系统,该系统可通过Sentient Chat访问。
罗马
当您使用Sentient Chat时,您的请求可以由多个AI模型处理,而不仅仅是单一的模型——有时甚至是数十个模型,这些模型可以顺序工作,或者在可能的情况下并行工作。
这解决了功能和效率低下的问题。
OML
→ 盗版
OML通过加密控制解决了对开放AI模型的盗用问题。每个模型都包含内置的授权机制——在执行之前,系统会验证一个数字签名,以确认用户有权限使用该模型。没有此授权,模型将不会响应。
→ 盗窃
窃取另一个AI模型变得不可能,因为OML将多个指纹(密钥响应对)直接嵌入到每个AI模型中。这使得任何人都可以通过特殊的挑战-响应测试来验证所有权。到目前为止,Sentient已经成功地在一个LLM中嵌入了近25,000个指纹,且没有任何性能损失——这足以确保模型在微调、压缩和合并中生存,使得盗窃几乎不可能。
→ 货币化
OML几乎记录了Sentient Chat中发生的所有交互——哪个用户、使用了哪些模型、何时使用以及发出了多少请求。所有这些数据都存储在链外,而关键的使用记录则写入链上账本。
这确保每位贡献者都能获得公平的奖励,任何人都可以通过检查区块链上的公共账本来验证这种公平性。
其他因素也有助于AI代理的货币化——您可以在这里阅读更多信息