📢 #Gate观点任务# 第一期精彩启程!调研 Palio (PAL) 项目,在Gate广场发布您的看法观点,瓜分 $300 PAL!
💰️ 选取15名优质发帖用户,每人轻松赢取 $20 PAL!
👉 参与方式:
1. 调研$PAL项目,发表你对项目的见解。
2. 带上$PAL交易链接。
3. 推广$PAL生态周系列活动:
为庆祝PAL上线Gate交易,平台特推出HODLer Airdrop、CandyDrop、VIP Airdrop、Alpha及余币宝等多项PAL专属活动,回馈广大用户。请在帖文中积极宣传本次系列活动,详情:https://www.gate.com/announcements/article/45976
建议项目调研的主题:
🔹 Palio 是什么?
🔹 $PAL 代币经济模型如何运作?
🔹 如何参与 $PAL生态周系列活动?
您可以选择以上一个或多个方向发表看法,也可以跳出框架,分享主题以外的独到见解。
注意:帖子不得包含除 #Gate观点任务# 和 #PAL# 之外的其他标签,并确保你的帖子至少有 60 字,并获得至少 3 个点赞,否则将无法获得奖励。
⚠️ 重复内容的帖子将不会被选取,请分享属于你独特的观点。
⏰ 活动时间:截止至 2025年7月11日 24:00(UTC+8)
阿里大模型又开源!能读图会识物,基于通义千问7B打造,可商用
来源:量子位
继通义千问-7B(Qwen-7B)之后,阿里云又推出了大规模视觉语言模型Qwen-VL,并且一上线就直接开源。
举个🌰,我们输入一张阿尼亚的图片,通过问答的形式,Qwen-VL-Chat既能概括图片内容,也能定位到图片中的阿尼亚。
首个支持中文开放域定位的通用模型
先来整体看一下Qwen-VL系列模型的特点:
按场景来说,Qwen-VL可以用于知识问答、图像问答、文档问答、细粒度视觉定位等场景。
比如,有一位看不懂中文的外国友人去医院看病,对着导览图一个头两个大,不知道怎么去往对应科室,就可以直接把图和问题丢给Qwen-VL,让它根据图片信息担当翻译。
视觉定位能力方面,即使图片非常复杂人物繁多,Qwen-VL也能精准地根据要求找出绿巨人和蜘蛛侠。
研究人员在四大类多模态任务(Zero-shot Caption/VQA/DocVQA/Grounding)的标准英文测评中测试了Qwen-VL。
另外,研究人员构建了一套基于GPT-4打分机制的测试集TouchStone。
如果你对Qwen-VL感兴趣,现在在魔搭社区和huggingface上都有demo可以直接试玩,链接文末奉上~
Qwen-VL支持研究人员和开发者进行二次开发,也允许商用,不过需要注意的是,商用的话需要先填写问卷申请。
项目链接:
-Chat
论文地址: